
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

�Correspond
E-mail addr
Journal of Fluids and Structures 24 (2008) 436–445
Brief Communication

A nonlinear analysis of stability and gust response
of aeroelastic systems

D. Dessia,�, F. Mastroddib

aDepartment of Vibration and Noise, Istituto Nazionale per Studi ed Esperienze di Architettura Navale (INSEAN),

Via di Vallerano 39, 00128, Rome Italy
bDepartment of Aerospace Engineering and Astronautics, University of Rome ‘‘La Sapienza’’, Via Eudossiana 16,

00184 Rome Italy

Received 17 January 2007; accepted 29 September 2007

Available online 3 December 2007

www.elsevier.com/locate/jfs
Abstract

In this paper, the mechanism of limit-cycle excitation is investigated for an aeroelastic system with structural

nonlinearities. The analysis is performed on a simplified aeroelastic model retaining only two structural modes (first

bending and first torsional modes) and with a simplified description of both unsteady loads due to wing oscillation and

external gust excitation. Two cases are considered, without and with gust excitation. In the first case, normal form

analysis is employed to give an approximation of the basin of attraction of stable limit cycles in the space of initial

conditions. In the second case, a critical gust intensity for a given gust gradient leading again to undamped oscillations

is identified.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Aeroelastic systems are typically characterized by a strong coupling between flow and structure that requires a

simultaneous description of both of them. Hence, like other fluid–structure interaction problems, aeroelastic systems

present a relevant complexity that demands simplified mathematical models and/or reducing techniques. Reduced-order

modelling (Dowell et al., 1999) seems to provide a general approach to this effort. It is essentially based on performing

high-fidelity simulations (numerical or experimental) of the complex system, thus providing data about the system

behaviour from which essential features are extracted. For instance, by projecting the model onto a reduced-space basis,

a limited set of generalized coordinates and modes capable of describing the system dynamics is obtained. As outlined

above, a rather different approach is the one based on the use of simplifying assumptions to reduce the intrinsic

complexity of the problem. This approach has been commonly followed in linear fixed-wing aeroelasticity since the

early formulations of the aeroelastic problem and it is based on the following considerations. First, the elastic motion of

a cantilevered wing is described with sufficient accuracy by the first bending and torsional modes, thus reducing the

structural degrees-of-freedom (dofs). Second, the load acting upon the wing is provided by the spanwise distribution of
e front matter r 2007 Elsevier Ltd. All rights reserved.
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the lift and pitching moment, assuming that the flow around each wing section is 2-D, incompressible and potential.

These concepts were well established at the early stage of aeroelasticity through the concept of typical section, i.e., the

reduction of the original problem to the study of the equivalent 2-D section, placed for instance at 70% of the wing

span. More recently, a further simplification has been provided by the finite-state formulation of the unsteady

aerodynamic loads: a few augmented states (and corresponding differential equations) were demonstrated to be

necessary to account satisfactorily for the circulatory lift. In this way, the aeroelastic system can finally be recast in a

pure differential form with a very limited set of unknowns. On this basis, in last decades, nonlinear aeroelasticity has

broadened the predictive capability of classical aeroelastic models via the inclusion of aerodynamic and structural

nonlinearities, providing several interesting applications of both the concepts and numerical/analytical methods

developed in the field of nonlinear dynamics.

The most relevant problem that has received renewed attention within fixed-wing aeroelasticity is the prediction of

the air-flow condition above which the wing–air system may become unstable. In fact, advanced wing configurations or

the deterioration of the airplane control surfaces have required a generalization of the well-established concept of

critical speed. Generally speaking, if the instability involves oscillations, the phenomenon is called flutter, otherwise it is

called divergence. Accordingly to the linear stability analysis, the oscillations beyond the so-called (linear) flutter speed

UL are not damped and their amplitude grows exponentially, from a mathematical point of view, leading to the collapse

of the wing structure. In the case of nonlinear aeroelastic systems, more attention must be paid to the effects that some

kinds of nonlinearities may induce on flutter. In Dowell et al. (1997) an exhaustive review of the scenario of nonlinear

aeroelastic phenomena was presented. Within this framework, nonlinear torsional stiffness and control-surface freeplay

were extensively analysed in the technical literature of the last decade [e.g., see Lee and Tron (1989); Alighanbari and

Price (1996); Lee et al. (1998)]. In these papers the nonlinear aeroelastic vibration of a 2-dof pitching and plunging

airfoil or 3-dof pitching, plunging airfoil with a control-surface independent rotation was numerically studied and

sometimes compared with experimental results.

Focusing on nonlinear aeroelastic systems exhibiting limit-cycle oscillations (LCO), there is well known experimental

evidence shown, e.g., in Lacabanne (1997), Matsushita et al. (1998) and Chen et al. (1998), as well as numerical

evidence, as shown e.g., in Woolston et al. (1957), Conner et al. (1997) and Dessi and Mastroddi (2004), that a

combination of (i) small-amplitude unstable limit cycles (LC) and (ii) large-amplitude stable LC may occur below the

linear flutter speed. This implies the possibility, under suitable initial conditions, of finite amplitude LCO even below the

linear flutter speed. This phenomenon [see Dessi and Mastroddi (2004)] displays a sub-critical Hopf bifurcation

exhibiting a so-called turning point at a velocity lower than the (linear) flutter speed, determining a ‘knee’ in the

bifurcation diagram where the unstable LC (sub-critical Hopf bifurcation) reverses into a stable one.

More recently, aeroelastic modelling has considered the combination of nonlinear and stochastic responses via the

inclusion of the effects due to flow random perturbations, as done in Poirel and Price (2001). In general, two distinct

effects may be identified for an airfoil undergoing a randomly perturbed inflow. In the first case, the perturbation

velocity components are orthogonal to the undisturbed flow (vertical gust). In this condition the related aerodynamic

forces are independent from the state-space variables (e.g., pitch angle, plunge, modal co-ordinates, etc.) because this

perturbation is not coupled with the system behaviour and, therefore, its influence is of one-way type. Therefore, the

mathematical model describes these forces directly as an external (stochastic) input. In the second case, the perturbation

involves only the flow-wise component of the velocity, thus generating aerodynamic forces that are dependent on the

state-space variables. The induced aerodynamic forces cannot be considered as an external (stochastic) input but only as

a perturbation of the system parameters. The parametrically excited system does not necessarily need a huge amount of

calculations to provide a significant statistics about the solution, since Monte Carlo approaches can be avoided by

using, for instance, a stochastic perturbation technique (Carcaterra et al., 2005).

Indeed, the inclusion of vertical gust effects in the aeroelastic modelling provides the physical mechanism by which

the wing is actually perturbed in the rest condition. This phenomenon has recently been investigated experimentally

providing new insight about how the forced wing response combines with the potential onset of LCO in certain flow

speed regimes (Tang et al., 2000; Tang and Dowell, 2002). In particular, in the knee-bifurcation scenario, a vertical gust

of adequate intensity might induce LCOs of relevant amplitude even below the linear flutter speed. A basin of attraction

of the LC solution in terms of the gust parameters is revealed to actually be more interesting from a physical point of

view than that obtained by varying the system initial conditions. In this paper, the oscillations of an aeroelastic typical

section (described in terms of plunge and pitch dofs) are analysed with the use of both numerical simulations and a

perturbation technique (the normal form method). Particular care is here devoted to investigating the physical

mechanism that causes the onset of flow-induced vibrations. Traditionally, the nonlinear analysis concerns the

determination of the steady-state solutions (fixed points and both stable and unstable LC) and, eventually, the

consequent study of local dynamics, but less attention is dedicated to the identification of the basins of attraction. When

the aeroelastic system is described by an autonomous equation (no forcing term), the use of nonlinear techniques like
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perturbation methods can help to simplify the governing equations and, in this way, to reduce also the numerical

task connected to ‘draw’ the boundaries of the basins of attraction in the space of initial conditions. On the other

hand, when a forcing term like the gust excitation is accounted for, the gust parameters become the key factors

that govern the asymptotic evolution and the stability of the solution. Thus, in the present paper, using the

discrete gust model (i.e., deterministic and finite-energy input model), the critical gust features determining

damped or undamped wing oscillations are identified for several combinations of the gust parameters, i.e., intensity

and gradient.
2. Aeroelastic system equations

In this section the governing equations of a 2-dof typical section described in terms of pitching and plunging motion

are introduced. The formulation of this problem is obtained as follows. Consider a 2-dof airfoil, elastically constrained

by a linear translational spring and a nonlinear torsional spring, oscillating in pitch and plunge. Using standard

notations, the plunging deflection is denoted by h, positive in the downward direction, and a is the pitch angle about the

elastic axis, positive with nose up. The elastic axis is located at a distance ahb from the mid-chord, where b is half the

chord, while the mass centre is located at a distance xab from the elastic axis. Both distances are positive when measured

towards the trailing edge of the airfoil. The linear aeroelastic equations of motion are given, for instance, in Fung

(1969). In Alighanbari and Price (1996) an extension of these equations to the case in which the torsional spring is

nonlinear is available, whereas in Poirel and Price (2001) the authors took into account the combination of unsteady

loads due to both airfoil oscillations and incoming gust. Thus, the final governing dimensionless equations are

€xþ xa €aþ ōUð Þ
2x ¼ �pfðtÞ � pcðtÞ;

xa

r2a

€xþ €aþ
1

U2
MðaÞ ¼ rfðtÞ þ rcðtÞ, (1)

where the overdot denotes differentiation with respect to the nondimensional time t, defined as t ¼ Vt=b, with V the

dimensional speed and b the semi-chord, x ¼ h=b is the nondimensional plunge displacement of the elastic axis,

ra ¼ ðJa=mb2
Þ
1=2 is the radius of gyration about the elastic axis; note that MðaÞ is the overall expression of the torsional

spring moment, including the linear part. In Eqs. (1), ō is given by ō ¼ ox=oa where ox and oa are the uncoupled

plunging and pitching modes natural frequencies, and U is the nondimensional air speed defined as U ¼ V=boa.

Moreover, pfðtÞ and rfðtÞ are the lift and pitching moment due to airfoil motion, respectively, and pcðtÞ and rcðtÞ are
the lift and pitching moment due the gust profile, respectively. For incompressible 2-D flow, Fung (1969) gives the

following expressions for pfðtÞ and rfðtÞ in the case of zero initial conditions:

pfðtÞ ¼
1

m̄
ð€x� ah €aþ _aÞ þ

2

m̄

Z t

0

fðt� sÞ _w3=4ðsÞds,

rfðtÞ ¼
1

m̄r2a
ahð€x� ah €aÞ � āh _a�

1

8
€a

� �
þ

2

m̄r2a

1

2
þ ah

� �Z t

0

fðt� sÞ _w3=4 ds, ð2Þ

where m̄ ¼ prb2=m is the mass ratio, w3=4ðtÞ ¼ _xðtÞ þ āh _aðtÞ þ aðtÞ and āh ¼ 1=2ð1� ahÞ is the downwash, with fðtÞ the
Wagner function. The expressions for pcðtÞ and rcðtÞ are

pcðtÞ ¼
2

m̄
wGð0ÞcðtÞ þ

Z t

0

cðt� sÞ _wGðsÞds
� �

,

rcðtÞ ¼
2

m̄r2a

1

2
þ ah

� �
wGð0ÞcðtÞ þ

Z t

0

cðt� sÞ _wG ds
� �

, ð3Þ

where wGðtÞ is the vertical gust velocity at 1=4-chord and cðtÞ is the Kussner function (Fung, 1969).
3. Finite-state modelling for nonlinear gust problem

Because of the existence of the integral term in the expression of aerodynamic forces (Eqs. (2) or (3)), classical

methods to investigate stability properties of dynamical systems do not work: for instance, the system stability near

equilibrium points cannot be analysed readily since most of the available methods for nonlinear dynamical systems are

developed for ordinary differential equations in the form _x ¼ Fðx; tÞ. The mathematical procedure to avoid the

convolution integral term has been applied to several systems in literature. It is essentially based on defining additional

variables and equations describing their evolution. In the field of aeroelasticity, this approach to the description of the
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circulatory part of the aerodynamic loads is known as aerodynamic finite-state modelling. The definition of the

augmented or lag state for the circulatory part of the gust lift follows the procedure adopted in Dessi et al. (2002) for the

unsteady lift due to wing motion; thus introducing

uðtÞ ¼
Z t

0

fðt� sÞ _w3=4ðsÞds, (4)

the augmented state relative to the unsteady lift due to the gust excitation is similarily defined as

vðtÞ ¼ wGð0ÞcðtÞ þ
Z t

0

cðt� sÞ _wGðsÞds. (5)

The aim of successive algebraic manipulations in the Laplace domain (all the equations are Laplace-transformed) is to

re-write these relationships as differential equations in the unknown function uðtÞ and vðtÞ. In the following, Laplace-

transformed terms will be denoted by a tilde, while the Laplace variable is denoted by s.

Skipping the derivation of the equation for the augmented state uðtÞ [see Dessi and Mastroddi, 2004 for details], let us

consider Eq. (5), that is integrated by parts, thus providing

vðtÞ ¼
Z t

0

wGðsÞ _cðt� sÞds. (6)

Applying Laplace transformation to the above equation yields

~vðsÞ ¼ s ~cðsÞ ~wGðsÞ, (7)

whereas the finite state, namely, the two-state representation of the Kussner function in the Laplace domain is

~cðsÞ ¼
1

s
�

�a

sþ �b
�

�c

sþ �d
¼

~NðsÞ
~DðsÞ

(8)

with �a ¼ 0:5792, �b ¼ 0:1393, �c ¼ 0:4208 and �d ¼ 1:802 (Blishplinghoff et al., 1996). Substituting Eq. (8) into Eq. (7),

one obtains

~DðsÞ

s
~vðsÞ ¼ ~D1ðsÞ~vðsÞ ¼ ~NðsÞ ~wGðsÞ, (9)

where ~D1ðsÞ is equal to s ~DðsÞ. As expected, the equation for the lag state vðtÞ is not coupled with other equations and it

provides only at each time instant the excitation due to the circulatory lift associated with the gust (on the other hand,

the final equation for uðtÞ is much more complicated because the downwash w3=4 couples this equation with the pitch

and plunge equations).

A simple but enlightening hypothesis for the atmospheric (deterministic) gust is a vertical velocity distribution of the

form

wGðtÞ ¼
w0

2
1� cos

pt
tG

� �
for 0ptp2tG, (10)

wGðtÞ ¼ 0 for t42tG, (11)

where w0 represents the peak gust velocity and tG represents the gust gradient expressed in half-chord unit lengths. The

Laplace transformation of wGðtÞ is (here the hypothesis of causality for the function wGðtÞ has been made, i.e.,

wGðtÞ ¼ 0 for to0)

~wGðsÞ ¼ w0
p
tG

� �2
1

sðs2 þ ðp=tGÞ
2
Þ
ð1� e�2tGsÞ. (12)

Setting again

�e10 ¼ �bþ �d; �e11 ¼ �b �d ; �e12 ¼ �bþ �d � �b�c� �a �d ; �e13 ¼ 1� �a� �c,

one obtains

ðs2 þ �e10sþ �e11Þ~vðsÞ ¼ ð�e13s2 þ �e12sþ �e11Þ w0
p
tG

� �2
1

sðs2 þ ðp=tGÞ
2
Þ
ð1� e�2tGsÞ

" #
. (13)
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The inverse transformation of the right-hand side (r.h.s) of Eq. (13) gives the following form:

€vþ e10 _vþ e11v ¼ gðtÞ, (14)

where the forcing term in the r.h.s. is

gðtÞ ¼ e11
w0

2
1� cos

pt
tG

� �
þ e12

w0p
2tG

sin
pt
tG

þ e13
w0p2

2t2G
cos pt

tG
; for tp2tG ;

gðtÞ ¼ 0; for t42tG :

8><
>: (15)

Finally, the problem may be recast as a system of eight first-order differential equations, as

_x ¼ AðUÞxþ fðx;UÞ þ gðt;UÞ, (16)

where x ¼ f_x; _a; _u; _v; x; a; u; vgT is the state vector, AðUÞ is the linear part of the equations of motion, fðx;UÞ is the vector
of nonlinear terms (structural nonlinearities) and gðt;UÞ is the external excitation due to the vertical gust profile. It is

usual to recast the system also in complex pseudo-diagonal form, introducing the state-space vector z ¼ Rx, so that

AðULÞR ¼ RK. In this case, the equation takes the form

_z ¼ KðUÞzþ f̂ðz;UÞ þ ĝðt;UÞ, (17)

where K, f̂ and ĝ are the transformed terms in the right eigenvector basis.
4. Results

The values of the system coefficients considered in this paper are

m ¼ 100; xa ¼ 0:25; ō ¼ 1:2; ra ¼ 0:5; and ah ¼ �0:5.

First, consider how the aeroelastic system loses (linear) stability as the inflow velocity (or the flight speed) U is

increased. The flutter speed and frequency are obtained by a standard eigenanalysis. The critical speed obtained is

UL ¼ 4:9371 (flutter speed), whereas oL ¼ 0:255 is the critical frequency associated with the pair of complex

eigenvalues transversely crossing the imaginary axis at UL. The system nonlinearity, that accounts for the presence of a

nonlinear torsional stiffness, is expressed as

MðaÞ ¼ aþ b3a
3, (18)

where b3 ¼ �50.

4.1. Nonlinear response to given initial conditions

First, the system nonlinear behaviour is analysed assuming wG ¼ 0, i.e., in the absence of a vertical gust. In this case,

the system does not contain any forcing function, i.e., gðtÞ ¼ 0; and, supposing that the effects of any previous gust were

damped out, one has vð0Þ ¼ _vð0Þ ¼ 0. Similarly, it is supposed that the system starts to evolve from a ‘frozen’

configuration (no unsteady lift for tp0), and it is set also uð0Þ ¼ _uð0Þ ¼ 0. Initial conditions are then applied only to the

pitch and plunge variables. Since bR ¼ lTAðULÞro0 and gR ¼ lT f̂ðr;UÞ40 (r and l are the critical right and left

eigenvectors, respectively), one has A2
LC ¼ �bR=gR40 and the system is subjected to a subcritical Hopf bifurcation

(Chow and Hale, 1982).

In previous works [see, e.g., Dessi et al. (2002)] the parameter ah was revealed as a key parameter for the description

of the pre-critical bifurcation scenario. Indeed, varying the value of such a parameter from �0:4 to �0:5 the bifurcation

diagram exhibited the onset of an unstable LCO. More specifically, for a value of the parameter ah less than about

�0:48, a pre-critical Hopf bifurcation occurred; in other words, in this case, although the speed velocity is less than the

linear stability value UL, the system exhibits a stable (trivial) equilibrium solution for all the initial conditions in the

state space up to a threshold (namely, the unstable LC). For initial conditions that are beyond such a threshold a stable

LCO is reached by the state-space vector. This description is valid for decreasing the value of U up to a lower limit, UT ,

under which the LC behaviour (both, stable and unstable regions) disappears. The margin given by UT denotes a

turning point, a point where the stable and the unstable linearly pre-critical LC branches merge. From an aeroelastic

point of view, this represents the lowest value of the flight speed U for which an instability may occur (given suitable

initial conditions or, as will be examined later, a proper gust excitation). It is worth to recall that UT does not depend

on the value of the nonlinearity, i.e., on b3. In general, the information provided from the curve of the LCOs allows to
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analyse the system asymptotic behaviour but does not provide any indication about the set of initial conditions that

determines a damped or undamped behaviour. In order to consider such a rich bifurcation scenario in the next

application, a value of ah ¼ �0:5 has been taken into account.

For this purpose, using suitable techniques the state space can be divided into several regions that constitute the

basins of attraction of the asymptotic solutions. A trivial approach is to generate a uniform grid in the state space, thus

using the value of the state vector at the nodes, say x
ðiÞ
0 , as the vector of initial conditions for the corresponding

simulation. Another possibility is to use a Monte-Carlo approach to generate a population of initial value problems,

each one characterized by a randomly chosen x
ðiÞ
0 . A more sophisticated approach, based on Poinaré maps and

embedded state vector, was also proposed by Trickey et al. (2002). Indeed, the previous approaches involve a heavy

numerical burden if they are applied on the original full-system equations.

On the other hand, the system equations can be further analysed so as to try to reduce their order and thus to obtain

information about the basins of attraction, following the procedure described in Dessi et al. (2002). In fact, the Hopf

bifurcation theorem prescribes the presence of a 2-D centre manifold in the neighbourhood of the flutter speed UL.

Thus, using near-identity transformations of the form (Wiggins, 1990)

z ¼ yþWðyÞ, (19)

with WðyÞ the nonlinear part of the transformation, it follows that the system dynamics is well approximated by the

normal form equations

_y1 ¼ ioLy1 þ ðUL �UÞ
X2
p¼1

a1pyp þ
X2

pqr¼1

g1pqrypyqyr,

_y2 ¼ �ioLy2 þ ðUL �UÞ
X2
p¼1

ā1pyp þ
X2

pqr¼1

ḡ2pqrypyqyr. ð20Þ

The dynamics described by Eq. (20) belongs to the phase plane of the real unknowns Re½y1� ¼ ðy1 þ y2Þ=2—the real

part of y1—and Im½y1� ¼ ðy1 � y2Þ=2i—the imaginary part of y1. Therefore, the unstable LC curve xðLCÞu ðtÞ for each

value of U divides the plane into two regions (inside and outside the unstable orbit) that constitute the basins of

attraction of the fixed point solution y ¼ 0 and of the stable LC curve yðLCÞs ðtÞ. By projecting the unstable LC solution

onto the physical state space, one obtains a curve xðLCÞu ðtÞ ¼ lTyðLCÞu ðtÞ that is the boundary between the two basin of

attractions.

Equation (20) is obtained with a third-order normal form analysis. As long as the system dynamics evolves far form

the critical point (both in magnitude of the vector y and parameter UL �U) the third-order approximation fails even

qualitatively. Indeed, the presence of the turning point implies that resonant terms of higher order—at least fifth-order

terms—have to be retained with the normal form analysis. In Dessi et al. (2002) it is shown that the inclusion of fifth-

order terms surely improves the qualitative behaviour of the solution (change of the LC stability at the turning point),

but there is still a lack of accuracy of the normal form solution in terms of amplitude of the LC. This unsatisfactory

approximation is not dependent uniquely on the order of the normal form analysis, but it is due also to the fact that the

coordinates y1 and y2 are no longer sufficient to describe the system dynamics, especially as long as the turning point is

approached.

This issue was investigated in Dessi et al. (2002) by introducing a quantity, evaluated at U ¼ UL, designated as the l̂-
point and defined as

l̂ ¼ l̂ði; j1; . . . ; jmÞ ¼ li � aTk, (21)

where kT ¼ fl1; l2; . . . ; lNg and aT ¼ fa1; a2; . . . ; aNg, with ai are positive integer number assuming that Tr½a� ¼ q is the

order of terms considered for the perturbation analysis. In an analogous way to linear analysis, where an eigenvalue (or

frequency) is associated to each linear term (or mode), using the above relationship it is possible to associate to each

nonlinear term a combination of the (linear) system eigenvalues.

Then, the assumption that only the l̂-points satisfying the condition jli � aTkjor are to be considered as ‘near-

resonant’ simply implies that only the corresponding nonlinear terms have to be retained in the equations (this

condition appears as an extension of the classical resonant condition, li � aTk ¼ 0). The value r of the radius was

determined with a trial and error procedure. Specifically, if we increased the number of l̂-points, no difference

was observed; on the other hand, if any of the l̂-points in the minimal set was removed, substantial deterioration was
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obtained—indeed, for some choices, instabilities were observed. Thus the equations used are

_y1 ¼
X

p2I1;1

a1pyp þ
X

pqr2I1;3

c1pqrypyqyr þ
X

pqrst2I1;5

e1pqrstypyqyrysyt,

_y3 ¼
X

p2I3;1

a3pyp þ
X

pqr2I3;3

c3pqrypyqyr þ
X

pqrst2I3;5

e3pqrstypyqyrysyt, ð22Þ

where y2 ¼ ȳ1, and y4 ¼ ȳ3 (the index combinations I i;q are reported in Dessi et al., 2002, providing a clear

improvement of both the time-history solution and LCO amplitudes for each considered value of the flow speed U.

Indeed, it is worth to consider that only a few index combinations provide nonzero coefficients, thus decreasing

significantly the computational cost.
4.2. Nonlinear response to gust input

Though interesting from a mathematical point of view, the determination of the basins of attraction from given initial

conditions in the state space does not provide practical information about the possibility that LCOs might be reached

below the flutter speed. Usually, the physical mechanism that makes the wing to vibrate is due to airplane

manoeuvering and/or to gust occurrence. In the second case, it is reasonable to expect that the intensity and duration of

the gust may affect the solution and its asymptotic behaviour. Therefore, the analysis of the flutter occurrence (in a

general sense) should explore the dynamics of the wing structure for all the combinations of the parameters describing

the gust. If the gust model gðtÞ is provided, the equations of motions become of the form given by Eq. (16). The solution

of Eq. (16) is numerically obtained with a Runge–Kutta method by using zero initial conditions and a discrete ‘1-

Cosine’ gust model. Within this assumption, for a given flow velocity U, the two parameters on which the solution

depends are therefore the gust intensity w0 and the gust gradient tG. Thus, the final scope of this analysis is to determine

the basin of attraction of the solution in the plane ðw0; tGÞ for each flow velocity U.

Indeed, this task would require again an intensive numerical simulation even if only the velocities corresponding to

the subcritical range UTpUpUL are considered. Therefore, the following procedure is adopted. First, the gust

gradient represented by tG is set to a prescribed value, e.g., t̄G, in the range of the admissible values. Then, the flow

velocity range ðUT ;ULÞ is spanned with a certain step DU . For each velocity U, the system solution after a period

tNbtG will be damped or undamped. Ideally, it is possible to identify the critical gust intensity w0ðU ; tGÞ that brings the

solution over the unstable LC (numerically, the solution will be very close to it for tptN ). Thus, defining at the time

instant tN the logarithmic decay ratio ZN as

ZN ðU ;w0; tGÞ ¼ ln
x
ðiÞ
N � x

ðiÞ
N�1

tN � tN�1
, (23)
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Fig. 1. Logarithmic damping ZN after 2000 time steps.
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Fig. 2. Basins of attraction of the stationary solutions and critical gust intensity at a gust gradient tG ¼ 10.
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Fig. 3. Several curve at various gust gradients for the critical gust intensity.
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where x
ðiÞ
N is the peak (maximum or minimum) corresponding to the xðiÞ state variable and ðtN � tN�1Þ is the time

interval between consecutive maxima. The resulting 2-D surface ZN ðU ;w0; t̄GÞ is then plotted as done in Fig. 1. In dark

shade the region has been highlighted corresponding to combination of speed and gust intensity that determines

undamped solution (really approaching the stable LC), whereas in lighter shade is indicated the region related to a

damped solution (no matter if the system goes to LC or fixed point solutions). The curve in the plane ðU ;w0Þ

representing the solution of the equation ZN ðU ;w0; t̄GÞ ¼ 0 can simply be drawn by considering the level 0 of the

contour plot shown in Fig. 1, thus obtaining the solid curve of Fig. 2. In the present calculations, more precisely,

the points of the curve described above are obtained by using the secant method to solve the previous equation in the

unknown w0 for each selected flow velocity U, i.e.,

w
ðjþ1Þ
0 ¼ w

ðjÞ
0 � ZN ðw

ðjÞ
0 Þ

w
ðjÞ
0 � w

ðj�1Þ
0

ZN ðw
ðjÞ
0 Þ � ZN ðw

ðj�1Þ
0 Þ

.

In Fig. 2 the curve of the critical gust intensity, obtained with the numerical scheme introduced above, is plotted with

respect of U. If a gust intensity is chosen below this curve, the solution tends to be damped out; otherwise, the solution
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Fig. 4. Three-dimensional representation of the dependence of the critical gust intensity upon speed and gust gradients.
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reaches the stable LC solution. Next, consider how this curve depends on the gust gradient. This is shown for several

gust gradients in Figs. 3 and 4. It is interesting to note that for tG !1 the critical gust intensity grows for every flight

speed considered, indicating a safe condition. In fact, in this case the gust effect induces a series of quasi-steady states

that differ from each other for the equilibrium solution, that is no more equal to zero (a constant vertical gust would

determine a constant angle of attack, then the equation would no longer be homogeneous). When the tG is decreased,

its duration becomes comparable to the system time constants, and the critical gust intensity reaches globally a local

minimum (worst gust condition, curves with circles in Fig 3). The presence of a minimum with respect to tG is also

apparent looking at Fig. 4, where for U ¼ 4:932 the section w0ðtG) is highlighted in white. On the other hand, for

tG ! 0 the critical gust intensity for each flow velocity tends to a finite value because the effect of a very short gust is

just to move the initial conditions to a prescribed value.
5. Concluding remarks

In the present paper the basins of attraction of a nonlinear aeroelastic system subjected to a vertical gust load has

been investigated. A preliminary stability analysis using a normal form perturbation approach has been carried out and

it has shown the occurrence of a pre-critical Hopf bifurcation. Next, the nonlinear gust response analysis has been

performed and the basin of attraction of the solution as function of gust profile parameters has been presented. The

results presented in this paper encourage further investigation on the dependence of the LC solutions on the gust profile.

The excitation due to discrete gust models surely is equivalent to considering the response of the system to certain initial

conditions belonging to a particular basin of attraction. If a continuous or stochastic gust is considered, the system

dynamics may be deeply different from the one examined in this paper. Moreover, the analysis of transient states need

also to be carefully analysed because they might be significantly affected by resonant phenomena when the gust

duration is comparable with the system time constants.
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